

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(Biphenyl-4-ylcarbonyl)-3-(2-chloro-4nitrophenyl)thiourea

M. Sukeri M. Yusof,^a Bohari M. Yamin^b and Nurziana Ngah^c*

^aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Menggabang Telipot, 21030 Kuala Terengganu, Malaysia, ^bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and ^cKulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang Malaysia

Correspondence e-mail: nurziana@iium.edu.my

Received 3 April 2012; accepted 17 April 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.137; data-to-parameter ratio = 12.5.

The benzene rings of the biphenyl group in the title compound, C₂₀H₁₄ClN₃O₃S, are nearly coplanar [maximum deviation = 0.20 (3) Å]. The mean plane of the biphenyl group forms a dihedral angle of $5.24 (7)^{\circ}$ with the aromatic ring of the nitrochlorobenzene group. Intramolecular N-H···Cl, N-H···O and C-H···S hydrogen bonds stabilize the cistrans conformation of the molecule. In the crystal, molecules are linked by $C-H \cdots O$ and $C-H \cdots S$ hydrogen bonds into mutually interwoven corrugated layers parallel to $(10\overline{2})$.

Related literature

For a related structure, see: Yusof et al. (2011). For bondlength data, see: Allen et al. (1987).

Experimental

Crystal data C20H14ClN3O3S

 $M_r = 411.85$

Monoclinic, $P2_1/c$	
a = 10.889 (2) Å	
b = 5.4502 (10) Å	
c = 30.532 (5) Å	
$\beta = 99.202 \ (4)^{\circ}$	
V = 1788.6 (6) Å ³	

Data collection

Bruker SMART APEX CCD area-	9537 measured reflections
detector diffractometer	3154 independent reflections
Absorption correction: multi-scan	2704 reflections with $I > 2/s(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.026$
$T_{\min} = 0.885, \ T_{\max} = 0.972$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	3 restraints
$wR(F^2) = 0.137$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$
3154 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
253 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2A \cdots Cl1$ $N2 - H2A \cdots O1$ $C16 - H16A - S1$	0.86	2.43	2.938 (2)	118
	0.86	1.87	2.608 (3)	143
	0.93	2.53	2.208 (3)	120
$C10-H10A\cdots O3^{i}$ $C10-H10A\cdots O3^{i}$ $C17-H17A\cdots S1^{ii}$	0.93	2.55	3.208 (3)	130
	0.93	2.57	3.354 (4)	142
	0.93	2.77	3.673 (3)	165

Symmetry codes: (i) x + 1, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (ii) -x + 1, -y, -z + 2.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

The authors thank the Ministry of Higher Education of Malaysia, Universiti Kebangsaan Malaysia and Universiti Malaysia Terengganu for research grant 59166.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2737).

References

Allen, F. H., Kennard, O., watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yusof, M. S. M., Wong, S. T. & Yamin, B. M. (2011). Acta Cryst. E67, o2483.

Mo $K\alpha$ radiation

 $0.35 \times 0.13 \times 0.08 \text{ mm}$

 $\mu = 0.36 \text{ mm}^{-1}$

T = 298 K

Z = 4

supplementary materials

Acta Cryst. (2012). E68, o1485 [doi:10.1107/S1600536812016686]

1-(Biphenyl-4-ylcarbonyl)-3-(2-chloro-4-nitrophenyl)thiourea

M. Sukeri M. Yusof, Bohari M. Yamin and Nurziana Ngah

Comment

The title compound, (I), is similiar to the previously reported compound 1-(biphenyl-4-yl-carbonyl)-3-(4-nitrophenyl)thiourea (II) (Yusof *et al.*, 2011) except for the presence of a chlorine atom at 2-position of the nitrobenzene ring. The bond lengths and angles are in normal ranges (Allen *et al.* 1987) and comparable to those reported for (II). The molecule (Fig. 1) is essentially planar, with a maximum deviation of 0.076 (2) Å for atom N1. The introduction of a chlorine substituent at the 2-position of the nitrobenzene ring makes the two benzene rings in biphenyl group nearly coplanar, forming a dihedral angle of 1.02 (14)° compared to that of 40.11 (15)° observed in II. The thiourea moiety makes dihedral angle of 6.15 (10)° and 0.92 (10)° with the C1—C6 and C15—C20 rings, respectively, compared to the corresponding angles of 16.14 (13)° and 17.75 (14)° in II. The *cis-trans* conformation of the molecule is stabilized by intramolecular N2 —H2A···Cl1, N2—H2A···O1 and C16—H16A···S1 hydrogen interactions (Table 1). In the crystal structure (Fig. 2), the molecules interact through intermolecular C—H···S hydrogen bonds to form mutually interwoven corrugated layers parallel to the (1 0 -2) plane.

Experimental

An acetone (30 ml) solution of 2-chloro-4-nitroaniline (1.60 g, 9.5 mmol) was added to a round-bottom flask containing 4-biphenylcarbonyl chloride (2.00 g, 9.5 mmol) and ammonium thiocyanate (0.70 g, 9.5 mmol). The mixture was refluxed for 2.5 h then filtered off and left to evaporate at room temperature. The yellowish precipitate obtained was washed with water and cold ethanol. Yellowish crystals suitable for X-ray analysis were obtained by recrystallization of the precipitate in DMSO.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and N—H = 0.86 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C, N)$. A rigid body restraint (DELU in *SHELXL-97*; Sheldrick, 2008) was applied for atoms N3, O2 and O3.

Computing details

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound with displacement ellipsods drawn at the 50% probability level.

Figure 2

The crystal packing of the title compound viewed down the *b* axis. Intermolecular hydrogen bonds are shown as dashed lines.

1-(Biphenyl-4-ylcarbonyl)-3-(2-chloro-4-nitrophenyl)thiourea

Crystal data	
$C_{20}H_{14}CIN_3O_3S$	F(000) = 848
$M_r = 411.85$	$D_{\rm x} = 1.529 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1235 reflections
a = 10.889 (2) Å	$\theta = 1.9 - 25.0^{\circ}$
b = 5.4502 (10) Å	$\mu = 0.36 \text{ mm}^{-1}$
c = 30.532 (5) Å	T = 298 K
$\beta = 99.202 \ (4)^{\circ}$	Slab, yellow
V = 1788.6 (6) Å ³	$0.35 \times 0.13 \times 0.08 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART APEX CCD area-detector	Detector resolution: 83.66 pixels mm ⁻¹
diffractometer	ω scan
Radiation source: fine-focus sealed tube	Absorption correction: multi-scan
Graphite monochromator	(SADABS; Bruker, 2000)

$T_{\min} = 0.885, T_{\max} = 0.972$	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
9537 measured reflections	$h = -11 \rightarrow 12$
3154 independent reflections	$k = -6 \rightarrow 6$
2704 reflections with $I > 2/s(I)$	$l = -35 \rightarrow 36$
$R_{\rm int} = 0.026$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
<i>S</i> = 1.16	H-atom parameters constrained
3154 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0709P)^2 + 0.5419P]$
253 parameters	where $P = (F_o^2 + 2F_c^2)/3$
3 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.66457 (7)	0.06984 (14)	0.93137 (2)	0.0553 (3)	
0.88661 (6)	0.87141 (13)	1.03030 (2)	0.0511 (2)	
0.9472 (2)	0.6794 (4)	0.93384 (7)	0.0691 (7)	
0.5004 (3)	0.4603 (5)	1.13921 (9)	0.0849 (8)	
0.6132 (2)	0.7850 (5)	1.15220 (7)	0.0701 (6)	
0.8315 (2)	0.3541 (4)	0.90589 (7)	0.0449 (5)	
0.8162	0.2613	0.8829	0.054*	
0.7806 (2)	0.4647 (4)	0.97322 (7)	0.0456 (5)	
0.8366	0.5731	0.9709	0.055*	
0.5772 (2)	0.6060 (5)	1.12973 (9)	0.0559 (6)	
1.0767 (3)	0.7043 (5)	0.86344 (10)	0.0538 (7)	
1.0856	0.8296	0.8844	0.065*	
1.1482 (3)	0.7078 (5)	0.83008 (9)	0.0509 (7)	
1.2040	0.8359	0.8290	0.061*	
1.1390 (2)	0.5250 (5)	0.79806 (8)	0.0374 (6)	
1.0527 (3)	0.3419 (5)	0.80119 (9)	0.0520 (7)	
1.0432	0.2171	0.7801	0.062*	
0.9802 (3)	0.3377 (5)	0.83435 (9)	0.0509 (7)	
0.9228	0.2119	0.8351	0.061*	
0.9919 (2)	0.5184 (5)	0.86650 (8)	0.0394 (6)	
1.2173 (2)	0.5270 (5)	0.76232 (8)	0.0393 (6)	
	x 0.66457 (7) 0.88661 (6) 0.9472 (2) 0.5004 (3) 0.6132 (2) 0.8315 (2) 0.8162 0.7806 (2) 0.8366 0.5772 (2) 1.0767 (3) 1.0856 1.1482 (3) 1.2040 1.1390 (2) 1.0527 (3) 1.0432 0.9802 (3) 0.9228 0.9919 (2) 1.2173 (2)	xy $0.66457(7)$ $0.06984(14)$ $0.88661(6)$ $0.87141(13)$ $0.9472(2)$ $0.6794(4)$ $0.5004(3)$ $0.4603(5)$ $0.6132(2)$ $0.7850(5)$ $0.8315(2)$ $0.3541(4)$ 0.8162 0.2613 $0.7806(2)$ $0.4647(4)$ 0.8366 0.5731 $0.5772(2)$ $0.6060(5)$ $1.0767(3)$ $0.7043(5)$ 1.0856 0.8296 $1.1482(3)$ $0.7078(5)$ 1.2040 0.8359 $1.1390(2)$ $0.5250(5)$ 1.0432 0.2171 $0.9802(3)$ $0.3377(5)$ 0.9228 0.2119 $0.9919(2)$ $0.5270(5)$	xyz $0.66457(7)$ $0.06984(14)$ $0.93137(2)$ $0.88661(6)$ $0.87141(13)$ $1.03030(2)$ $0.9472(2)$ $0.6794(4)$ $0.93384(7)$ $0.5004(3)$ $0.4603(5)$ $1.13921(9)$ $0.6132(2)$ $0.7850(5)$ $1.15220(7)$ $0.8315(2)$ $0.3541(4)$ $0.90589(7)$ 0.8162 0.2613 0.8829 $0.7806(2)$ $0.4647(4)$ $0.97322(7)$ 0.8366 0.5731 0.9709 $0.5772(2)$ $0.6060(5)$ $1.12973(9)$ $1.0767(3)$ $0.7043(5)$ $0.883008(9)$ 1.2040 0.8359 0.8290 $1.1390(2)$ $0.5250(5)$ $0.79806(8)$ $1.0527(3)$ $0.3419(5)$ $0.80119(9)$ 1.0432 0.2171 0.7801 $0.9802(3)$ $0.3377(5)$ $0.83435(9)$ 0.9228 0.2119 $0.86650(8)$ $1.2173(2)$ $0.5270(5)$ $0.76232(8)$	xyz $U_{iso}*/U_{eq}$ 0.66457 (7)0.06984 (14)0.93137 (2)0.0553 (3)0.88661 (6)0.87141 (13)1.03030 (2)0.0511 (2)0.9472 (2)0.6794 (4)0.93384 (7)0.0691 (7)0.5004 (3)0.4603 (5)1.13921 (9)0.0849 (8)0.6132 (2)0.7850 (5)1.15220 (7)0.0701 (6)0.8315 (2)0.3541 (4)0.90589 (7)0.0449 (5)0.81620.26130.88290.054*0.7806 (2)0.4647 (4)0.97322 (7)0.0456 (5)0.83660.57310.97090.055*0.5772 (2)0.6060 (5)1.12973 (9)0.0559 (6)1.0767 (3)0.7043 (5)0.86344 (10)0.0538 (7)1.08560.82960.88440.065*1.1482 (3)0.7078 (5)0.83008 (9)0.0509 (7)1.20400.83590.82900.061*1.1390 (2)0.5250 (5)0.79806 (8)0.0374 (6)1.0527 (3)0.3419 (5)0.80119 (9)0.0520 (7)1.04320.21710.78010.062*0.9802 (3)0.3377 (5)0.83435 (9)0.0509 (7)0.92280.21190.83510.061*0.9919 (2)0.5184 (5)0.86650 (8)0.0394 (6)1.2173 (2)0.5270 (5)0.76232 (8)0.0393 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C8	13045(3)	0 7076 (6)	0 75971 (10)	0.0609 (8)	
H8A	1 3153	0.8315	0.7809	0.073*	
C9	1.3767 (3)	0.0913 0.7083 (7)	0.72601(11)	0.0681 (9)	
НОЛ	1.3707 (3)	0.8333	0.7248	0.082*	
C10	1.4542	0.5275 (6)	0.7240 0.60487 (0)	0.0551 (8)	
	1.3038 (3)	0.5275 (0)	0.09487 (9)	0.0551 (8)	
HIUA	1.4127	0.5274	0.6725	0.066*	
C11	1.2787 (3)	0.3470 (7)	0.69684 (11)	0.0661 (9)	
H11A	1.2691	0.2228	0.6757	0.079*	
C12	1.2060 (3)	0.3469 (6)	0.73013 (10)	0.0570 (8)	
H12A	1.1481	0.2222	0.7308	0.068*	
C13	0.9227 (2)	0.5278 (5)	0.90462 (9)	0.0439 (6)	
C14	0.7603 (2)	0.3068 (5)	0.93919 (8)	0.0404 (6)	
C15	0.7273 (2)	0.4852 (5)	1.01169 (8)	0.0408 (6)	
C16	0.6357 (3)	0.3307 (6)	1.02337 (10)	0.0543 (7)	
H16A	0.6067	0.2002	1.0050	0.065*	
C17	0.5876 (3)	0.3692 (6)	1.06191 (10)	0.0547 (7)	
H17A	0.5274	0.2636	1.0696	0.066*	
C18	0.6284 (2)	0.5623 (5)	1.08869 (9)	0.0446 (6)	
C19	0.7191 (2)	0.7181 (5)	1.07878 (8)	0.0449 (6)	
H19A	0.7467	0.8485	1.0974	0.054*	
C20	0.7686 (2)	0.6773 (5)	1.04071 (8)	0.0396 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	<i>U</i> ¹³	U ²³
S1	0.0593 (5)	0.0552 (5)	0.0514 (4)	-0.0271 (4)	0.0085 (3)	-0.0054 (3)
Cl1	0.0524 (4)	0.0538 (4)	0.0498 (4)	-0.0219 (3)	0.0157 (3)	-0.0058 (3)
01	0.0819 (15)	0.0638 (14)	0.0722 (14)	-0.0380 (12)	0.0450 (12)	-0.0317 (12)
O2	0.0952 (18)	0.0893 (18)	0.0836 (16)	-0.0164 (13)	0.0550 (15)	0.0070 (14)
03	0.0645 (14)	0.0899 (16)	0.0605 (13)	0.0008 (11)	0.0238 (11)	-0.0129 (12)
N1	0.0453 (12)	0.0477 (13)	0.0434 (12)	-0.0120 (10)	0.0128 (10)	-0.0082 (10)
N2	0.0458 (13)	0.0420 (12)	0.0526 (13)	-0.0151 (10)	0.0190 (10)	-0.0077 (11)
N3	0.0498 (14)	0.0645 (16)	0.0577 (14)	0.0066 (11)	0.0216 (11)	0.0093 (11)
C1	0.0617 (18)	0.0461 (17)	0.0583 (17)	-0.0176 (14)	0.0241 (14)	-0.0175 (14)
C2	0.0548 (17)	0.0448 (16)	0.0573 (17)	-0.0188 (13)	0.0219 (13)	-0.0077 (13)
C3	0.0366 (13)	0.0363 (13)	0.0390 (13)	0.0025 (10)	0.0051 (10)	0.0045 (11)
C4	0.0615 (18)	0.0478 (17)	0.0504 (16)	-0.0162 (14)	0.0201 (13)	-0.0125 (13)
C5	0.0573 (17)	0.0461 (16)	0.0534 (16)	-0.0211 (13)	0.0216 (13)	-0.0096 (13)
C6	0.0393 (13)	0.0382 (14)	0.0410 (13)	-0.0018 (11)	0.0076 (11)	0.0008 (11)
C7	0.0386 (13)	0.0429 (14)	0.0361 (12)	0.0016 (11)	0.0049 (10)	0.0066 (11)
C8	0.071 (2)	0.061 (2)	0.0552 (17)	-0.0232 (16)	0.0239 (15)	-0.0135 (15)
C9	0.073 (2)	0.075 (2)	0.0625 (19)	-0.0270 (18)	0.0315 (16)	-0.0033 (17)
C10	0.0517 (17)	0.072 (2)	0.0442 (15)	0.0002 (15)	0.0169 (13)	0.0032 (15)
C11	0.070 (2)	0.074 (2)	0.0601 (18)	-0.0131 (18)	0.0278 (16)	-0.0217 (17)
C12	0.0601 (18)	0.0551 (18)	0.0606 (17)	-0.0152 (14)	0.0240 (14)	-0.0149 (15)
C13	0.0427 (14)	0.0406 (15)	0.0500 (15)	-0.0056 (12)	0.0118 (12)	-0.0052 (13)
C14	0.0337 (13)	0.0414 (15)	0.0452 (14)	-0.0030 (11)	0.0036 (10)	0.0034 (12)
C15	0.0375 (14)	0.0404 (14)	0.0461 (14)	-0.0030 (11)	0.0113 (11)	0.0016 (12)
C16	0.0545 (17)	0.0507 (17)	0.0624 (18)	-0.0163 (14)	0.0236 (14)	-0.0086 (14)
C17	0.0513 (16)	0.0541 (18)	0.0645 (18)	-0.0134 (14)	0.0265 (14)	0.0032 (15)

supplementary materials

C18	0.0389 (14)	0.0507 (16)	0.0463 (14)	0.0028 (12)	0.0133 (11)	0.0062 (13)
C19	0.0425 (14)	0.0482 (16)	0.0441 (14)	-0.0021 (12)	0.0078 (11)	0.0005 (12)
C20	0.0343 (13)	0.0416 (15)	0.0439 (13)	-0.0056 (11)	0.0097 (10)	0.0027 (11)

Geometric par	rameters	(Å,	°)
---------------	----------	-----	----

S1—C14	1.653 (3)	C5—H5A	0.9300
Cl1—C20	1.733 (3)	C6—C13	1.485 (4)
O1—C13	1.214 (3)	C7—C8 1.379 (4)	
O2—N3	1.221 (3)	C7—C12	1.380 (4)
O3—N3	1.221 (3)	C8—C9	1.391 (4)
N1-C13	1.377 (3)	C8—H8A	0.9300
N1-C14	1.397 (3)	C9—C10	1.361 (5)
N1—H1A	0.8600	С9—Н9А	0.9300
N2-C14	1.340 (3)	C10—C11	1.360 (5)
N2-C15	1.395 (3)	C10—H10A	0.9300
N2—H2A	0.8600	C11—C12	1.384 (4)
N3—C18	1.470 (4)	C11—H11A	0.9300
C1—C2	1.377 (4)	C12—H12A	0.9300
C1—C6	1.384 (4)	C15—C16	1.395 (4)
C1—H1B	0.9300	C15—C20	1.398 (4)
C2—C3	1.388 (4)	C16—C17	1.378 (4)
C2—H2B	0.9300	C16—H16A	0.9300
C3—C4	1.385 (4)	C17—C18	1.363 (4)
C3—C7	1.488 (3)	C17—H17A	0.9300
C4—C5	1.380 (4)	C18—C19	1.373 (4)
C4—H4A	0.9300	C19—C20	1.375 (3)
C5—C6	1.382 (4)	C19—H19A	0.9300
C13—N1—C14	129.3 (2)	С8—С9—Н9А	119.7
C13—N1—H1A	115.3	C11—C10—C9	119.2 (3)
C14—N1—H1A	115.3	C11—C10—H10A	120.4
C14—N2—C15	131.7 (2)	C9—C10—H10A	120.4
C14—N2—H2A	114.1	C10-C11-C12	120.4 (3)
C15—N2—H2A	114.1	C10-C11-H11A	119.8
O2—N3—O3	123.9 (3)	C12—C11—H11A	119.8
O2—N3—C18	117.7 (3)	C7—C12—C11	121.8 (3)
O3—N3—C18	118.5 (2)	C7—C12—H12A	119.1
C2—C1—C6	121.5 (3)	C11—C12—H12A	119.1
C2-C1-H1B	119.3	O1—C13—N1	121.5 (2)
C6-C1-H1B	119.3	O1—C13—C6	121.3 (2)
C1—C2—C3	121.7 (2)	N1—C13—C6	117.2 (2)
C1—C2—H2B	119.2	N2-C14-N1	113.8 (2)
C3—C2—H2B	119.2	N2-C14-S1	129.5 (2)
C4—C3—C2	116.2 (2)	N1-C14-S1	116.71 (19)
C4—C3—C7	122.0 (2)	C16—C15—N2	125.3 (2)
C2—C3—C7	121.8 (2)	C16—C15—C20	117.4 (2)
C5—C4—C3	122.5 (3)	N2-C15-C20	117.3 (2)
С5—С4—Н4А	118.8	C17—C16—C15	120.7 (3)
C3—C4—H4A	118.8	C17—C16—H16A	119.6

C4—C5—C6	120.7 (2)	C15—C16—H16A	119.6
С4—С5—Н5А	119.7	C18—C17—C16	119.9 (3)
С6—С5—Н5А	119.7	C18—C17—H17A	120.1
C5—C6—C1	117.4 (2)	C16—C17—H17A	120.1
C5—C6—C13	125.5 (2)	C17—C18—C19	121.5 (3)
C1—C6—C13	117.1 (2)	C17—C18—N3	120.3 (3)
C8—C7—C12	116.7 (2)	C19—C18—N3	118.2 (3)
C8—C7—C3	121.9 (2)	C18—C19—C20	118.6 (3)
C12—C7—C3	121.4 (2)	C18—C19—H19A	120.7
C7—C8—C9	121.4 (3)	C20—C19—H19A	120.7
С7—С8—Н8А	119.3	C19—C20—C15	121.8 (2)
С9—С8—Н8А	119.3	C19—C20—Cl1	117.3 (2)
C10—C9—C8	120.5 (3)	C15—C20—Cl1	120.91 (19)
С10—С9—Н9А	119.7		
C6—C1—C2—C3	-0.2 (5)	C5—C6—C13—N1	-6.0 (4)
C1—C2—C3—C4	1.0 (4)	C1—C6—C13—N1	175.1 (3)
C1—C2—C3—C7	-179.3 (3)	C15—N2—C14—N1	178.0 (2)
C2—C3—C4—C5	-0.7 (4)	C15—N2—C14—S1	-1.8 (4)
C7—C3—C4—C5	179.6 (3)	C13—N1—C14—N2	4.2 (4)
C3—C4—C5—C6	-0.5 (5)	C13—N1—C14—S1	-175.9 (2)
C4—C5—C6—C1	1.3 (4)	C14—N2—C15—C16	0.8 (5)
C4—C5—C6—C13	-177.5 (3)	C14—N2—C15—C20	-178.8 (3)
C2-C1-C6-C5	-0.9 (5)	N2-C15-C16-C17	-179.0 (3)
C2-C1-C6-C13	178.0 (3)	C20-C15-C16-C17	0.6 (4)
C4—C3—C7—C8	-179.0 (3)	C15—C16—C17—C18	1.0 (5)
C2—C3—C7—C8	1.3 (4)	C16—C17—C18—C19	-1.6 (5)
C4—C3—C7—C12	0.9 (4)	C16—C17—C18—N3	179.6 (3)
C2—C3—C7—C12	-178.8 (3)	O2—N3—C18—C17	1.9 (4)
C12—C7—C8—C9	0.5 (5)	O3—N3—C18—C17	-177.8 (3)
С3—С7—С8—С9	-179.7 (3)	O2-N3-C18-C19	-176.9 (3)
C7—C8—C9—C10	-0.8 (6)	O3—N3—C18—C19	3.3 (4)
C8—C9—C10—C11	0.6 (5)	C17—C18—C19—C20	0.5 (4)
C9-C10-C11-C12	-0.1 (5)	N3—C18—C19—C20	179.3 (2)
C8—C7—C12—C11	0.0 (5)	C18—C19—C20—C15	1.2 (4)
C3—C7—C12—C11	-179.8 (3)	C18—C19—C20—Cl1	-177.9 (2)
C10-C11-C12-C7	-0.2 (5)	C16—C15—C20—C19	-1.7 (4)
C14—N1—C13—O1	-4.7 (5)	N2-C15-C20-C19	177.9 (2)
C14—N1—C13—C6	173.9 (2)	C16-C15-C20-Cl1	177.3 (2)
C5-C6-C13-O1	172.6 (3)	N2-C15-C20-Cl1	-3.1 (3)
C1—C6—C13—O1	-6.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A…C11	0.86	2.43	2.938 (2)	118
N2—H2A…O1	0.86	1.87	2.608 (3)	143
C16—H16A····S1	0.93	2.53	3.208 (3)	130

			supplementary materials		
C10—H10 <i>A</i> ···O3 ⁱ	0.93	2.57	3.354 (4)	142	
C17—H17A····S1 ⁱⁱ	0.93	2.77	3.673 (3)	165	

Symmetry codes: (i) *x*+1, -*y*+3/2, *z*-1/2; (ii) -*x*+1, -*y*, -*z*+2.